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Outline

+ Text Mining

» Textual Analysis

= Counts: Word, Sentence, Phrases, & Proximity Counts
= Readability Indices

= Risk Sentiment (overall risk, financial risk, litigation risk, tax risk, etc.)\
= Competition Metric

= Cosine similarity measure

= \Word variation over time

= Sentiment analysis (Positive, Negative, Sentiments Spread)
+Financial Fraud Assessment Models

+Conclusion




Textual Analysis:

Seven CRead’aBi[ity
Indices
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Readability Indices

Gunning-Fog Index https://en.wikipedia.org/wiki/Gunning_fog_index
Smog Index https://en.wikipedia.org/wiki/SMOG

Flesch Reading Ease https://en.wikipedia.org/wiki/Flesch—Kincaid readability tests

Flesch-Kincaid Grade Level https://en.wikipedia.org/wiki/Flesch—
Kincaid readability tests

Automated Readability Index
https://en.wikipedia.org/wiki/Automated readability index

Coleman-Liau Index https://en.wikipedia.org/wiki/Coleman—Liau index

Bog Index https://kelley.iu.edu/bpm/activities/bogindex.html
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https://en.wikipedia.org/wiki/Coleman%E2%80%93Liau_index
https://kelley.iu.edu/bpm/activities/bogindex.html

1. Gunning-Fog Index

(Robert Gunning, 1952)

Gunning-Fog Index = 0.4[(Words/Sentences)
+ 100(Complex words/Words)]

+ 17 College graduate
» 16 College senior

» 12 High school senior

= 10 High school sophomore

6 Sixth grade




/. Bog Index

A plain English measure of financial
reporting readability *
by
Bonsall IV, Leone, Rennekamp
N
Journal of Accounting and Economics, 63
(2017) pp. 329-357



Satyam Textual Analysisg

Year
Total Word Count

Total Word Count without numerics
Sentence Count

Gunning-Fog Index

Smog Index

Flesch Reading Ease

Flesch-Kincaid Grade Level
Automated Readability Index
Coleman-Liau Index

WIPRO LTD

Year
Total Word Count
Total Word Count without
numerics
Sentence Count
Gunning-Fog Index
Smog Index
Flesch Reading Ease
Flesch-Kincaid Grade Level
Automated Readability Index

Coleman-Liau Index

Example: Readability Indices
for Satyam and WIPRO

2008
81258

74833
2642
21.6

18.666

21.777

17.281

17.759

14.439

2008
93966

85584
3624
19.2
17.059
28.928
15.113
15.082
14.04

2007
85673

79145
2770
21.6

18.762

21.777

17.344

17.819

14.357

2007
99464

90570
3894
19.2
16.935
28.956
15.017
15.012
14.182

2006
80785

74881
2575
21.6
18.73

22.212

17.411

17.908

14.145

2006
96763

88177
3865
18.4
16.644
30.938
14.628
14.573
13.916

2005
58473

54641
1966
20.8

18.459

22.893

17.001

17.316
14.2

2005
101922

93798
4080
18.8
16.797
30.24
14.771
14.709
13.97

2004
67858

60675
2175
20.8

18.394

22.92

17.014

17.383

14.239

2004
87781

78915
3511
18.4
16.625
30.684
14.579
14.397
13.9

2003
70837

63526
2368
20.4
18.18

23.236

16.704

16.964

14.386

2003
75005

66793
3290
17.6
16.004
32.505
13.785
13.423
14.05

2002
259828

227833
5770
20
13.618
51.699
16.962
13.404
0.293

2002
120396

104844
4656
18.4
16.688
30.451
14.629
14.471
13.959
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Example: Graph of Readability
Indices for Satyam and WIPRO
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Example: Graph of Readability
Indices for Satyam and WIPRO
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Risk Sentiment measure by
Feng LI

Do Stock Market Investors Understand the Risk Sentiment of \,
Corporate Annual Reports?

Definition of Risk Sentiment:
= RS; = In(1+NR))
Change of risk sentiment as
+ ARS; = In(1+NR)) — In(1 + NR._;)

where NR; and NR;_; are the numbers of occurance of risk-related words in
year t and year t — 1 respectively.

» risk”, “risks”, “risky”, “uncertain”, “uncertainty”, and “uncertainties



Enron Risk Sentiments = RSt = Ln(1+NRt)
Fang Li Measure
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The information content of mandatory '\
risk factor disclosures in corporate filings \ *

(Item 1A)
by

John L. Campbell e Hsinchun Chen e
Dan S. Dhaliwal ¢ Hsin-min Lu e Logan B. Steele

In
Rev Account Stud (2014) 19:396—455



Word List for Financial Risk

Table 9 Key words list by risk category

Risk category Keyword Risk category  Keyword

Financial Anti-takeover Financial Reserves
(provisions|provision)

Financial Bank debt Financial Revolver

Financial Capital Financial Sale of productive assets
(expenditurelexpenditures)

Financial Capital (leaselleases) Financial Stock market listing

Financial Chapter 11 Financial Stock price drop

Financial Chapter 7 Financial Stock price volatility

Financial Chapter 9 Financial Underfunded pensions

Financial Collateral Financial Underwriting

Financial Concentrated ownership Financial Volatility of operating results

Financial (Covenantlcovenants) Financial Volatility of revenues

Financial Credit (facilitylfacilities) Financial Volatility of sales

Financial Credit rating Financial Working capital

Financial Credit risk Other- Acquisition

Idiosyncratic
Financial Debt burden Other- Adequate staffing
Idiosyncratic
Financial Decline in stock price Other- Advertising

Idiosyncratic




Word List for Litigation Risk

Table 9 continued

Risk category = Keyword Risk category  Keyword

Legal and Pending (lawsuitllawsuits) Other- Foreign exchange
Regulatory Systematic

Legal and Plaintiff Other- (Forwardlforwards)
Regulatory Systematic

Legal and Possibility of Other- Fuel
Regulatory (restatementlrestatements) Systematic

Legal and Potential (lawsuitllawsuits) Other- Future
Regulatory Systematic

Legal and Product liability Other- Gas
Regulatory Systematic

Legal and (Regulationlregulations) Other- Gasoline
Regulatory Systematic

Legal and Regulatory Other- GDP
Regulatory Systematic

Legal and Regulatory approval Other- G.D.P.
Regulatory Systematic

Legal and Regulatory change Other- GNP
Regulatory Systematic

Legal and Regulatory compliance Other- G.N.P.
Regulatory Systematic

Legal and Regulatory environment Other- General business risks
Regulatory Systematic

Legal and Related (partylparties) Other- General conditions

—Rcoulatory Svstematic




Word List for Litigation Risk

Tax

Tax
Tax
Tax
Tax
Tax
Tax
Tax
Tax
Tax
Tax
Tax
Tax

Tax
Tax
Tax
Tax
Tax
Tax
Tax
Tax
Tax

Aggressive tax
(positionlpositions)

Back taxes

Deferred tax (assetlassets)
Deferred tax (liabilitylliabilities)
Excise (taxltaxes)

FIN 48

Internal Revenue Service
IRS

LR.S.

IRS audit

IRS judgment

Loss (carrybacklcarrybacks)

Loss
(carryforwardlcarryforwards)

Property (taxltaxes)

Provision for income (taxltaxes)
State (taxltaxes)

(TaxITaxes)

Tax audit

Tax (authoritylauthorities)

Tax (liabilitylliabilities)

Tax (penaltylpenalties)

Taxable




Textual Analysis with
More Built-in Features

s. Risk Sentiment Metrics

Risk Sentiment (Feng Li Model)
https://papers.ssrn.com/sol3/papers.cfm?abstract id=898181

Risk Sentiments (Campbell et al. Model)
https://link.springer.com/article/10.1007/s11142-013-9258-3

D Q0T

Ris
Ris
Ris
Ris
Ris
Ris

K Sentiment (Financial)

K Sentiment (Legal and Regulatory, i.e., Litigation)
K Sentiment (Tax)

K Sentiment (Systematic, economy)

K Sentiment (Idiosyncratic, specific to firm)

K Sentiment (Overall)



https://papers.ssrn.com/sol3/papers.cfm?abstract_id=898181
https://link.springer.com/article/10.1007/s11142-013-9258-3

Risk Sentiments for
Based on 10K

Hertz

Risk Sentiments

—o—RS ( Feng Li) —e—RS-Financial Risk (Campbell et al) —e—RS-Litigation (Campbell et al)

Risk Sentiments Graph for Hertz
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Graph of Cosine Similarity
for Satyam and WIPRO

Cosine Measure of Similarity for Satyam and WIPRO in
relation to 2003 20-F

2003 2004 2005 2006 2007

——Satyam Cosine Measure  ==W!IPRO Cosine Measure




COSINE MEASURE OF SIMILARITY

21

Change in Cosine Measure of Similarity
for Satyam and WIPRO by Year (20-F)

0.995
0.99
0.985
0.98 Fraud Year 2005
0.975
2003-4 2004-5 2005-6

YEARS IN COMPARISON



Graph of Cosine Similarity for Bancorp Inc. with
respect to 2009 10K
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Change in Cosine Similarity Measure for Bancorp
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Enron -Cosine Measure w.r.t. 1999 10Q1
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‘Measure of
Com}oetition




- >

Measure of Competition
Li, Lundholm, and Minnis JAR, 2013, p. 399

Li, Lundholm, and Minnis (2013) develop a model to compute
management's perception of the intensity of competition using
textual analysis of firms’ 10-K filings.

» Measure of competition varies across-industry and within-industry

+ It is related to the firm’s future rates of diminishing marginal
returns.

+ This measure is based on the count of the number of words like
“competition, competitor, competitive, compete, competing,”
including those words with an "s" appended, less any case where
"not," "less," "few," or "limited" precedes the word by three or fewer

words.

PCTCOMP = 1000*NCOMP/NWORDS

where NCOMP = number of words in 10-K as described above
and NWORDS = Total number of words without numbers.



SeeleiNE/

Competition Metric for Five companies for 10 years
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10 Years Word Variations in 10K
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Assessment of Financial Risk and
Fraud Risk using Textual Analysis

+"'Detect Fraud Before Catastrophe” by Lee, Churyk, and
Clinton, Strategic Finance, March 2013, p. 33.

= Proactive content analysis techniques can help

?’nanagement accountants prevent catastrophic financial
allout.

» "Using Nonfinancial Measures to Assess Fraud Risk” by
Brazel, Jones, and Zimbelman, JAR 2009, p. 1135.

+SEC: Corporate Filers Beware: New “"RoboCop” is On Patrol

= Based on AQM and Text Analytics (not used yet, some
companies are working on it)




Fraud Risk Assessment Model /1
using Textual Analysis

Lee, Churyk and Clinton (Strategic Finance , 2013, p. 33

Fraud detection model based on the textual, i.e., content,
analysis of MD&A in 10-K:

Fraud, = 2.89757 — 0.83408 (Positive Emmotion;)
— 0.48315 (Present Tense))
+ .0001 (Total Words;)
— 2.80753(Colons;)

“Conventional fraud detection measures using ratio analysis
and other financial data were either unable to detect the fraud

or unable to detect it soon enough to avoid catastrophic
outcomes”.



Text Mining: Fraud Risk Assessment /
Model using Nonfinancial Measures

Brazel, Jones, and Zimbelman (JAR, December 2009)

Del Global Technologies (1997, Fraud)

Income: Overstated $3.7 million.
Revenue: 25% from PY. L
Employees: 6% (440 to 412)‘l
Distribution Dealers: 38% (400 to 250)

Fischer Imaging Corp (1997, No Fraudg
Revenue: 27% B
Employees: 20% &
Distribution Dealers: /%



Liu and Moffitt
(Journal of Emerging Technology in Accounting, 2016)

= Textual analysis of SEC Comments Letters and
developed a measure of intensity based on the
modality of comment letters.

= Observed that the intensity of comment letters is
positively associated with the probability of a
restatement of the reviewed 10-K filings.

= Moreover, textual analysis and text mining
techniques provide information about companies’
performance that is not available otherwise.



Tone Analysis and Tone Dispersion

1. Loughran and Mcdonald. 2011. When is a Liability not a Liability? Textual

Analysis, Dictionaries, and 10-Ks. 7he Journal of Finance, Vol. 6, Issue 1,
February: 35-65.

= Develop an alternative negative word list, along with five other word lists,

that better reflect tone in financial text. They link the word 'ists to:
« 10-K filing returns, trading volume, return volatility, Fraud, material weakness, and

unexpected earnings
2. Allee, K.D., and M. D. Deangelis. 2015. The Structure of Voluntary

Disclosure Narratives: Evidence from Tone Dispersion. Journal of Accounting
Research, Vol. 53 No. 2, p. 241. Tone dispersion is associated with

= Analysts” and investors’ responses to conference call narratives.
= Reflects and affects the information that managers convey through their narratives.
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